Category Archives: Thermo-slider

THERMOCOAX 的HAF604认证

作为核电站安全相关部件的授权出口商,THERMOCOAX为中国民用核市场服务超过20年。

我们非常自豪地宣布,我们在中国国家核安全管理局(NNSA)注册登记的HAF 604认证已经延期到2022年。

THERMOCOAX将通过提供更多的电缆,重要传感器及加热器来服务于核电市场。

THERMOCOAX Inside EUTELSAT 172

 

THERMOCOAX supports the 100 volt Satcom new generation. First European full electrical propulsion satcom produced by Airbus D&S.

On-board EUTELSAT 172,  THERMOCOAX provides the propulsion’s heating rings (attitude & orbit control) + the 100 volts heating elements mostly used during the transfer orbit.

Launching’s planned next June, from French Guiana Space Center.

THERMOCOAX Aeronautic Products : Grey Water Drain Mast Equipped with Electrical Anti-Icing System

Thermocoax Pedigree

THERMOCOAX is a worldwide key player and has been designing, developing and manufacturing heating solutions for aeronautic market for 20 years.

Based on the 60 years homemade Mineral Insulated Cable, we provide our customers with solutions for:

  • Ground applications:
    • R&D programs with institutes
    • Ground aero test equipment
  • Flying models:
    • Anti-icing system for pitot tube, Angle of Attack, Total Air Temperature Sensor
    • Wire Cutter (WSPS) on helicopter equipped with electrical anti-icing devices.
    • Anti-icing screen for helicopter engine air inlet.
  • Specific Application:
    • Shower Heating system for VIP business Jet

 

Technical Application of Grey water drain mast

To save weight, the grey water from the washbasins is ejected to the outside of the plane.

Function of the configuration, most planes are equipped with two drain masts, one at the front and one at the rear where the washbasins are.


Drains are fixed at the bottom of the fuselage exposed to the outside air.

The major risk with a drain mast is the production of ice at the tip and risking a potential impact with the fuselage or it getting sucked into the engines.

 

Technical Description of Drain Mast Anti-Icing

In accordance with the specification, the drain is equipped with one or two water pipes.

The shell is made using the resin-moulded method.

For optimal efficiency of the anti-icing system, THERMOCOAX technology warms up the water pipes instead of the shell.

Heating cable technology available:

  • Self-regulated cable
  • Or fixed power cable coupled with switches
  • Inconel or nickel sheath cable
  • Ø 5 up to 3mm
  • Power supply 28 or 115Vac 400hz
  • Dissipated power from 20 to 250 Watts
  • Pipe Temperature up to >40°C at -55°C environmental conditions

Each heating cable is produced with cold ends.

The cable is then wrapped onto the tube.

The cable is flexible enough to increase the volume of cable and get more heat for areas exposed to coldest conditions.

Cable is brazed on the tube for:

  • Conduction pipe/heater for more thermal efficiency
  • Robustness
  • Reliability
  • Longevity
  • Production repeatability

  

 

Thermocoax Drain Mast Final Assembly

Drain masts are developed, produced and checked in Thermocoax facilities

Acceptance Test Criteria of Drain Masts:

  • Dimensional
  • Weight
  • Line resistance
  • Insulated resistance under 500Vcc
  • Dielectric 1mn 1500Vac

 

Test for Qualification Program of Drain Mast

THERMOCOAX conducts the qualification test program in accordance with our customers’ specifications.

Our engineers write the QTP for customer approval prior to running the tests.

Most of the tests (thermal, humidity, electrical etc.) on the drain mast are performed in THERMOCOAX’s test lab facilities.

These require heavy equipment (vibration, acceleration, impact etc.) and are sub-contracted to external laboratories or provided by our customers with the complete water system.

-Typical Qualification Test Schedule for Drain Mast

  • Vibration
  • Acceleration
  • Impact & Crash Safety
  • Vibration
  • Pyrotechnic Shock
  • Load Test
  • Temperature & Altitude
  • Temperature Variation
  • Explosive Atmosphere
  • Waterproofing
  • Sun & Dust
  • Fluid Susceptibility
  • Salt
  • Audio, induced signal, radio frequency
  • HIRF, ERFE
  • Lightning
  • Icing
  • Fire and Flammability
  • Combined Temperature, Altitude, Humidity
  • Dielectric Test
  • Corrosion
  • Engine Blade Out
  • X-Ray Examination
  • Thermal Cycling Test

 

 

Lightning test

 

THERMOCOAX supplies the following platforms:

  • Dassault Falcon Jet
  • Bombardier C Series
  • Embraer EJet 1 & 2

 

THERMOCOAX is a key player for anti-icing systems on board aircraft platforms and is proud to participate in challenging international aero programs.

THERMOCOAX focuses on high quality heating products for the best stability and repeatability in operation. For 15 years, we have witnessed the challenges faced by our customers to manufacture aircraft and to improve the safety and comfort of passengers.

 

New large programs are taking shape, THERMOCOAX is ready for production ramp up and supporting the market with cost-effective drain masts.

TUS & SAT Thermocouples for heat treatment

Description of the Thermocouples

When two different materials are welded together to make a junction and heated up, an electromotive force (EMF) is generated make the measurement of temperature possible.

The EMF generation uses the Seebeck effect.

The thermocouples measure temperature differences.

The EMF are generated in Temperature gradients.

The sensitivity of the thermocouple is the sum of the thermoelectric power of each conductor.

The advantage of a higher EMF means a better temperature resolution.

The thermocouples are standardized. The basic values of the EMF and the tolerances are laid down in the IEC584-1+2 standards.

Thermocouples cover a temperature range from -200°C to +2300°C.

The essential THERMOCOAX thermocouple construction is that both conductors, insulation and metal protecting sheath are combined as a cable :

  • The two wires make the thermoelectric pair
  • The mineral insulator is a highly compacted powder
  • The continuous metal sheath provides the mechanical and chemical protection of the pair.

 

At the end, the cores and the sheath are welded and constitute the junction.

 

 

For the aerospace industry and more recently for the automotive industry, the heat treatment of high end materials has to conform to the ASM 2750 E and CQI-9 standards respectively.

Those standards give the pyrometric requirements for thermal processing equipment used for the heat treatment of metal parts.

The System Accuracy Tests (SATs) and the Temperature Uniformity Surveys (TUS) are key parts of state of the art heat treatment operations.

The SAT is performed to assure the accuracy of the furnace control and recording system in each controlled zone.

TUS shall be performed to measure temperature uniformity and to establish the acceptable work zone and qualified operating temperature range(s).

Thermocouples shall be installed in the thermal processing equipment within the work zone or as close as possible to it.

The load sensors are attached to or in contact with production material.

Those temperature homogeneity standards concern atmospheric pressure (air) furnaces as well as vacuum furnaces.

The homogeneity of the furnace temperature depends on the quality and accuracy of the measuring instruments used.

When choosing survey TCs, their maximum correction factor needs to be below the required specification and tolerances of the furnace.

To meet the demanding requirements of heat treatment applications, thermocouple types R / S / B / J / T / E / K / N / C have to conform to precise calibration requirements, especially in terms of tolerance.

Tolerance values are governed by standards, such as NF EN 60584-1 and ASTM E230.

The ASTM E230 “Special tolerance” is more restrictive than the NF EN 60584 “Class 1” below 375°C.

Tolerance values are given as a deviation in degrees Celsius or a function of temperature. The larger value is applicable.

For example, for K type thermocouples, the special tolerance value to conform to the ASTM E230 is +/-1.1°C or 0.4%

SAT & TUS thermocouples must be calibrated every 6 months for Type B, R & S and every 3 months for N & K thermocouples. The allowed error is +/- 1.1 ° C or + / 0.4% for SATs thermocouples and +/- 2.2 ° C or +/- 0.75% for TUS thermocouples.

We also talk about tolerance classes for thermocouples.

Thermocoax inspects the whole thermocouple production chain.

The mineral insulated cables that represent the core of the technology, are manufactured in the French factory of Athis de l’Orne (61).

Furthermore, THERMOCOAX has its own calibration laboratory certified by a national COFRAC accreditation No.2-1384 with an international recognition.

If required, we can deliver a COFRAC calibration certificate for each thermocouple manufactured.

  • Calibration Laboratory – COFRAC Certified
  • CERTIFICATE No. 2-1384 rev. 3
  • International recognition
  • Range of validity accessible on the COFRAC website

http://www.cofrac.fr/annexes/sect2/2-1384.pdf

 

To offer the full range of temperature calibration points for heat treatment manufacturing, we use two different calibration process: The fixed points calibration and the calibration by comparison.

 

 

 

THERMOCOAX owns a wide range of means for calibration by comparison, as well as by fixed points. This variety of equipment allow us to perform comparisons between the different measuring instrument in order to ensure the validity of our results and our uncertainties. We also frequently perform inter-laboratory comparisons in accordance with the international standard EN ISO/IEC 17043.

Our team of specialists with our 60 years of experiences in thermal applications and in the management of regulatory requirements of the aerospace and automotive industry, gives us an international reputation.

The quality of the thermocouples, the homogeneity of the production and a high-performance calibration process, make it possible to improve reliability and efficiency of the heat treatment plants.

 

 

 

Immersion heater for maintaining aluminum bath temperature and for pre-heating of foundry ovens

Introduction

The quality of the extruded or molded aluminum parts depends mainly on the quality of the alloy components and the temperature homogeneity of the liquid aluminum.

Foundries are looking for efficient solutions that maintain heat and temperature in terms of energy consumption and performance.

This project for developing a high efficiency immersion heater started a few years ago at Thermocoax with a very specific R & D project for the aluminum foundry.

The challenge was to offer a high efficiency immersion heater for the aluminum industry, using the Thermocoax mineral-insulated cables and our expertise for applications in harsh environments.

The immersion heater is used in the aluminum industry to keep the aluminum in its liquid state upstream of the extrusion or molding processes.

Liquid aluminum is extremely corrosive. Immersed steel tubes or Inconel tubes are destroyed in a few hours.

The challenge of Thermocoax was to offer a sheath resistant to the corrosion caused by molten aluminum and to optimize the heating efficiency of the immersion heater.

The Thermocoax solution for the immersion heater sheath

Thermocoax’s R & D team has worked closely with a major manufacturer of high quality aluminum in order to verify the results of its internal studies under real conditions.

There is no metal capable of resisting immersion in an aluminum bath. Similarly, thermally deposited ceramic coatings (plasma, HVOF, etc.) on steels have a very limited lifetime (see figure below).

The usual ceramics containing silica cannot be immersed for long periods without suffering significant deterioration either.

Only one ceramic is capable of meeting the challenge : Sialon which has the crude formula Si3Al3O3N5. Sialon is a solid solution of alumina (Al2O3) in silicon nitride (Si3N).

Sialon is an expensive but essential material for applications related to liquid aluminum.

It is an extremely rigid material that does not allow for matrixing which could increase heat transfer.

Tests of ceramic coatings on steel tubes

immersion-heater-1          24h later       immersion-heater-2

 

Thermocoax solution to optimize thermal efficiency of the immersion heater

During the molding process, liquid aluminum is at a temperature of 750 ° C.

In order to heat the aluminum bath homogeneously without compromising the reliability of the immersion heater, Thermocoax engineers have developed a design that places the heating element closer to the wall of the ceramic tube. This mechanically stable concept, even at high temperatures, limits the thermal resistance between the heating element and the ceramic.

Thanks to this new design, we guarantee high efficiency over the long term, without degrading the level of heat exchange over time.

Tests and calculations

immersion-heater-3           immersion-heater-4

 

Thermal gradient observed » 140 ° C

Optimizing the immersion heater reliability

The heating elements used are Thermocoax mineral-insulated cables with a cold part allowing a low temperature connection with the connectors.

The double insulation offered by the ceramic tube and the electrically-insulated heating element make this immersion heater a completely safe solution for operators.

The insulation resistance of this immersion heater provides a very low level of leakage current.

A thermocouple positioned strategically inside the immersion heater allows a precise and permanent control of the temperature of the heating element and continuous monitoring of the immersion heater.

Thermocoax uses a ceramic metal connector with a very high dielectric strength. This connector has been specifically designed to meet the requirements of immersion heaters in an industrial environment.

 

immersion-heater-5

 

Tests conducted at the end of the manufacturing process :

– Insulation resistance > 1012 Ohms at 1000 VDC
– Dielectric resistance at 800 VAC for 1 min
– Leakage current < 10mA at 800 VAC
– Heating test at 850 ° C in air

Design verification

An initial verification of the design was made on site at an aluminum manufacturer. Pre-heating tests were conducted in an 800 kg oven for 3 weeks. The results were very conclusive with a leakage current which remained very low.

A second long-term test in production was carried out continuously over 2 ½ years in a 5 tonne furnace

The design has been verified by professionals in the aluminum industry.

Technical specifications

  • Heating zone : 300 mm
    • Temperature control
    • Adjustable power
    • Typical power: 7 kW (up to 20 kW)
    • Thermal flow: 14 W / cm²
    • Cold shares
    • Leakage current <10 mA at 900 ° C (double insulation)

Developed for specific high quality aluminum foundries with a very high level of technical requirements (insulation, temperature control, energy efficiency, etc.)

immersion-heater-6

 

THERMOCOAX Aeronautic Products : Carbon Brake Temperature Monitoring & Aircraft Brake Monitoring System

Thermocoax Pedigree :

THERMOCOAX has been a worldwide key player for 20 years in designing, developing and manufacturing with thermocouple sensors for the aeronautical market.
Based on the 60 years Mineral Insulated Cable produced in-house, we are providing our customers with solutions for:
– Ground applications:
 R&D programs with institutes
 Ground aero test equipment

– Flying models:
 Thermocouples and RTDs for air cabin management system.
 Thermocouples for helicopter engines with 15 000 units installed
 Alternator Bearing temperature measurement on twin aisle and double deck platforms

– Scientific tasks:
 Skin temperature on supersonic frame
 Engine Space launcher

image-4

 

Technical Applications of the Brake Temperature Sensor :

New technologies are rapidly developing and the brake industry is working hard to make aircraft operations safer and offer passengers more comfortable travelling conditions.

A new generation of brakes has been installed on modern aircraft. Carbon brakes developed by key brake manufacturers is the result of a long and costly program of investment in research and development.

The new carbon disk generation provides more power braking during landing but also during braking in an emergency.

Firstly, the brake thermocouple gives the brake temperature in real time and can be transformed in a “hot brake” alert to the pilot when the value goes over a predetermined temperature threshold.

It gives valuable information to the cockpit on the temperature of the right and left brakes. If these differ too much, an asymmetric friction on the brakes can cause difficulties when maintaining heading and keeping speed under control.

Thanks to this system, the pilot receives a “Go/No Go” clear message for takeoff authorization. The brake thermocouple indicates that in case of a braking emergency event during takeoff, the brake will have his full capacity to stop the aircraft on time for the safety of all passengers.

Secondly, during takeoff in hot climates, this temperature monitoring avoids a too early landing gear retraction. This avoids a risk of tyre explosion in the wheel compartment.

The brake thermocouple is now a key piece of equipment that airlines use to reduce turnaround times (TAT) in short-haul operations to around 30 minutes.

frein-carbone

This new generation of carbon brakes replaces the old metallic brake.

Each brake manufacturer develops their own carbon technology. Specialists agreed to give carbon technology products a longer life, more braking cycles and much higher efficiency of braking especially for heavy airliners.

But carbon brake technology produces high amounts of heat energy during braking and the temperature can get very hot if the dissipation of kinetic energy is not optimum. This temperature rises to nearly 1000°C during normal braking. In case of emergency braking at full power during takeoff at full weight, the friction off the carbon disks is so powerful that the energy produced causes the temperature to rise to 2000°C.

Temperature monitoring is implemented on every aircraft platform, commercial and military. One thermocouple per brake/wheel is the rule. A typical single-aisle aircraft is equipped with 4 thermocouples, a twin-aisle aircraft 8 to 12 thermocouples, double-deck aircraft 16 thermocouples and military fighter 2.

This is an opportunity for THERMOCOAX to contribute to this program and improve the safety of the airframe and passengers every day around the world.

 

Technical description of brake thermocouple

When measured at nominal temperature, the thermocouple typically has the following properties:

  • K type thermocouple
  • Single-circuit, 2 wires

19-09-2016-17-36-50

  • Class 1 in accordance with IEC and ASME
  • Ceramic insulator
  • Dielectric under 500V
  • Insulation resistance:
    • 1011Ω.m at room °T
    • 107 Ω.m at 600°C
  • Inconel 600 sheath
  • Ø 2.5 to 4.75mm
  • Hermetic connector EN2997
  • Hermetic connector D38999
  • 2 compensated pins

image1

  • Oval base or mesh for easy removal from the torque tube when replacing

image3

  • Mass: <100g
  • Environmental and safety of flight tests
  • Impact: RTCA/DO160 Sect 7 cat B, D
    • Cat B
    • Cat D
  • Vibration: RTCA/DO160 Sect 8
    • Cat R curve W
    • Cat T curve E
    • 2000 hz, 200G

19-09-2016-17-05-50

  • HALT Tests

 

Acceptance Test Criteria of the Brake Thermocouple :

  • Temperature calibration
  • Helium leak test
  • XRay by sampling
  • Time constant
  • Visual and mechanical inspection
  • Overvoltage
  • Line resistance
  • Polarity
  • Insulation resistance
  • Dielectric 500Vac, 60Hz/60s
  • Mass
  • Final manufacturing report

 

Packaging and Cleanliness :

THERMOCOAX focuses on high quality Brake thermocouple products for the best stability and repeatability while in operation.

We understand our customers’ challenges to manufacturing braking systems and to make the aeronautical industry reliable and the millions of passengers safer.

At THERMOCOAX, we are working hard to contribute to these incredibly challenging programs.

THERMOCOAX has supplied many commercial programs and military platforms.

THERMOCOAX designs, develops, qualifies and produces in accordance with aircraft specifications such as :

  • Airbus 350
  • Embraer EJet
  • Mitsubishi Regional Jet
  • Irkut MC21
  • Sukhoi Super Jet100
  • COMAC C919

 

THERMOCOAX is the major player for brake thermocouples and is a proud contributor to great aeronautic programs.

 

img_8104

THERMOCOAX and NIAC certification

Nuclear Quality Assurance : Sharing data to reduce TCO (Total Cost of Ownership)

Introduction

On the nuclear market, there is no compromise with safety. That’s why quality assurance is key. Nevertheless cost associated with auditing is significant, but how do we reduce it?

The challenge : make the associated cost for quality assurance of THERMOCOAX nuclear solutions more affordable.

What quality standards are internationally recognized ?

THERMOCOAX have a quality program that meets or exceeds the requirements of 10CFR50 Appendix B or ASME NQA-1 and accepts 10CFR21.

The Code of Federal Regulations (CFR) is a codification of general and permanent rules laid down by the US Nuclear Regulatory Commission (NRC). For THERMOCOAX the significant part is from the 10 CFR 50 – Domestic licensing of production and utilization facilities, specifically, the Appendix B – Quality assurance criteria for NPP and fuel reprocessing plants [3],

The 10CFR50 App B establishes the 18 fundamental requirements for the design, construction, manufacture and operation of SSC with regard to safety. Another American Quality Assurance Standard is NQA-1 which also has the 18 fundamental requirements and a few extras.

American Society of Mechanical Engineers (ASME) has developed more clear standards for implementation of the Code. ASME NQA-1 have described the Code requirements and implementation in more detail for the end users.

The requirement : to demonstrate compliance with 10CFR50 Appendix B or ASME NQA-1 and accept 10CFR21, as well as sharing information and making it available to our customers.

 

NIAC auditing within ASME compliance

NIAC is the acronym name used by the Nuclear Industry Assessment Committee ( http://niacusa.org/)

The process of forming NIAC started in 1992/1993. The founding members, working with their legal departments, created the NIAC Charter which established broad guidelines for conduct at meetings, operations, membership, committees, officers and applicability to 10CFR21.

The Charter defines the sharing of audits-only to members pre-authorized by the audited supplier.

NIAC members are companies who supply goods and services to the nuclear industry that have a quality program that meets or exceeds the requirements of 10CFR50 Appendix B or ASME NQA-1 (1989), and accept 10CFR21.

The NIAC organization develops and maintains the procedures and processes necessary to plan, guide, and share supplier evaluations with authorized member companies.

NIAC maintains a database of supplier evaluations, provides schedules, procedures, and checklists to guide supplier evaluation activities, and maintains interfaces with member organizations and the Nuclear Procurement Issues Committee (NUPIC). NIAC also organizes working meetings for members and the steering committee twice a year.

NIAC membership offers considerable cost and schedules savings through the sharing of supplier evaluations.

Audits are performed on a pro rata basis, whereas a company should perform about 1 audit for every 3 received (shared from another performing member).

 

The benefits of Thermocoax’s NIAC certification

THERMOCOAX has been audited and will be NIAC approved. Our customers can share the benefit of this certification. Those savings have a direct impact on the Total Cost of Ownership of our solutions. For the mutual benefit of Thermocoax and its customers.

 

  THERMOCOAX and nuclear SOLUTIONS

THERMOCOAX Nuclear specializes in In-core and Ex-core SOLUTIONS such as :

  • Radiation sensors (neutron flux & gamma flux)
  • Temperature measurement
  • Level and flow measurement

We also offer SERVICES such as DESIGN, EXPERTISE, INSTALLATION, and COMMISSIONING.